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An Old Problem

Reasoning about programs with local state: difÞcult 
problem with over 30 years of research

What is meant by equivalence?

Observable (Contextual) Equivalence:  ÒTwo programs 
are equivalent if either can be put in the context of a 
larger program and yield the same value.Ó [Pitts00]

No clear agreement on meanings of Òprogram contextÓ 
nor Òobservable behaviorÓ 



Related Work

Meyer and Sieber (1988): Halpern-Meyer-
Trakhtenbrot store model to prove equivalence of 
ALGOL procedures with no parameters

Formalized informal arguments about context

Provided seven examples capturing subtleties of 
reasoning about local state



Different Approaches

Denotational semantics: Scott 1972, Milne et al. 1977, 
Stoy 1981, Halpern et al. 1984

Categorical approaches: Reynolds 1981, Oles 1982, 
Stark 1996

Operational semantics: Mason & Talcott 1989+, Pitts 
& Stark 1993

Game semantics: Abramsky et al. 1996+, Laird 2004



Goals

Avoid intricate memory models, category theory, and 
explicit use of context

DeÞne explicit structure for modeling state

DeÞne compositional semantics based on binary 
relations

Prove Meyer & Sieber examples

Axiomatic treatment of program equivalence and 
partial correctness



Language

Types

Base type: Individual elements of domain of 
computation

Functional type s �à  t: s and t are types or        .

Expressions: two disjoint sets deÞned by mutual 
induction

Value expressions

Program expressions

void



Value Expressions

A variable

A symbol of the Þrst-order signature 

A   -term of the form         ,            ,         , or             , 
variable x, program expression p, and value expression e

An application P(d) or P(), value expression P of 
functional type with non-void return type and value 
expression d

! ! x.p ! x.p; e ! () .p; eλ() .p

Σ



Program Expressions

Assignment            , variable x and value expression d 

Test R(d), relational symbol R and value expression d

Nondeterministic choice p + q, program expressions p, q

Sequential composition p ; q, program expressions p, q

Iteration p*, program expression p

Application P(d) or P(), P with void return type and 
value expression d

Let:

x := d

let x = d in p end = (! x.p)(d)
let x = d in p; e end = (! x.p; e)(d)



Closure Structures

Represents state of execution as set of variable/value 
bindings -- must allow destructive updates!

Programs are relations on closure structures

Motivated by operational semantics of ML, Scheme 
with static binding



Closure Structures

A closure structure is a triple

Every node in T contains

A binding x = c, x is a variable, c is a value

A reference to its parent in T

Every    uniquely determines an environment: a list of 
and all of its ancestors back to the root of T

   is the active environment, 

Empty closure structure is (! , ! , [ ] )

! = (T, " , s)

actv(! )α

β β



Closure Structure Values

Intrinsic values: Elements and functions of domain of 
computation

Closures: Pairs          ,     is a reference to a node in T 
and t is a !-expression         ,            ,             , or  

Closure created when t is evaluated

   used to recall environment active at evaluation

Environment used to interpret free variables of t

Values in environment may change,     does not

A

(t, ! ) β
! x.p ! x.p; e ! () .p; e λ() .p

β

β



Closure Structure Properties

A node is accessible if it is reachable starting from 
active environment or reference on stack, following 
parent references or references    in closures 

Closure structures are equivalent if accessible 
substructures are isomorphic: 

1-1 correspondence between stack entries and 
active environments preserving stack order, 
reference relations, and binding values

(t, ! )β



Closure Structure Operations

For variable x, value c, and environment    in   , 
denotes environment with new binding            
prepended to

For closure structure    and environment    in   ,  
denotes closure structure with    popped off stack, 
pushing active environment on top of stack, making   
active environment

Mostly combined as 

x = c : α! !

β β + σ

(x = c : α) + σ

x = c
!

!!
β

β



Evaluation and Assignment

Always done in 

Evaluation:          returns Þrst (most recently bound) 
occurrence of x in 

Assignment:             destructively rebinds Þrst occurrence 
of x in               to a

If a is a closure structure         , stack is popped, top 
element is always 

            pops stack & makes active environment that value

actv(! )

! (x)
actv(! )

! [x/a ]

(t, ! )
β

actv(! )

rest(σ)



Semantics

Let CS denote set of closure structures and Val set of 
values

Value expression e is a relation

Program expression p is a relation

Value expressions as relations on closure structures:

[e] ! CS " (CS " Val)

[[ p]] ! CS" CS

[[ e]] = {(! , " !) | (! , " , c) ! [ e] },



Value Expression Semantics

¥ If x is a variable, [x] = { (σ,σ′,σ(x)) |
σ ! CS, σ(x) is defined} , where σ′ = σ if σ(x) is an
intrinsic value, or σ with β pushed on the stack if
σ(x) is a closure (t, β).

¥ If f is a symbol of the signature of A, [f] =
{ (σ,σ, fA) | σ ! CS} .

¥ If t is a λ-expression of the form λx.p, λx.p; e, λ().p,
or λ().p; e, then

[t] = { (σ,σ′, (t, actv(σ))) | σ ! CS} ,

where σ′ is σ with actv(σ) pushed onto the stack.



Value Expression Semantics

¥ If P is a functional expression with non-void return
type and d is a value expression of the appropriate
input type for P , then

[ P(d)] = { (! , rest(" ), b) | ! # ! $ ! c ! (%x.p; e,&)
(! , #, (%x.p; e,&)) " [ P] , (#, $, c) " [ d] ,
((x = c : &) + $, " , b) " [[ p]] # [ e] }

$ { (! , " , f (c)) | ! # (! , #, f ) " [ P] , (#, " , c) " [ d] } .

¥ If P is a functional expression with non-void return
type and no parameter, then

[ P()] = { (! , rest(" ), b) | ! # ! (%().p; e,&)
(! , #, (%().p; e,&)) " [ P] , (& + #, " , b) " [[ p]] # [ e] }

$ { (! , " , f ()) | (! , " , f ) " [ P] } .



Program Expression Semantics

• [[ x := d]] = {(σ, τ [x/a ]) | (σ, τ, a) ∈ [ d] , σ(x) is deÞned}.
Recall that if a is a closure, then the stack of τ is popped in
the formation of τ [x/a ].

• [[ R(d)]] = {(σ, τ ) | (σ, τ, a) ∈ [ d] , RA(a)}.

• [[ p + q]] = [[ p]] ∪ [[ q]] .

• [[ p ; q]] = [[ p]] ◦ [[ q]] .

• [[ p∗]] =
⋃

n! 0 [[ p]] n = the reßexive tr ansitive closure of [[ p]] .



Program Expression Semantics

¥ If P is a functional expression with void return type and d is
a value expression of the appropriate input type for P , then

[[ P(d)]] = { (! , rest(" )) | ! # ! $ ! c ! (%x.p, &)
(! , #, (%x.p, &)) " [ P] , (#, $, c) " [ d] ,
((x = c : &) + $, " ) " [[ p]] }

# { (! , " ) | ! # ! f (! , #, f ) " [ P] , (#, " ) " [[ d]] } .

¥ If P is a functional expression with void return type and no
parameter, then

[[ P()]] = { (! , rest(" )) | ! # ! (%().p,&)
(! , #, (%().p,&)) " [ P] , (& + #, " ) " [[ p]] }

# { (! , " ) | ! f (! , " , f ) " [ P] } .



Consider program

Rewritten without lets:

Example

let y = 4
f = λz.(y := y + z ; x := y)

in f (1) ; x
end

! y.(! f .(f (1) ; x) ! z.(y := y + z ; x := y)) (4)



Example

Rule for application

Rule for application

[ λy.(λf .(f (1) ; x) λz.(y := y + z ; x := y)) (4)]

= { (σ, rest(τ ), b) | ((y = 4) + σ, τ, b) ∈
[ λf .(f (1) ; x) λz.(y := y + z ; x := y)] } .

[! f .(f (1) ; x) ! z.(y := y + z ; x := y)]

= {(" , rest(#), b) | (f = (! z.(y := y + z ; x := y), actv(" ))) + " , #, b)
! [[f (1)]] " [x]}.



Example

By function application and variable rules

Composition

[[f(1)]] = {(! , rest(" )) | ∃(#x.p, $)
! (f) = (#x.p, $), ((x = 1 : $) + ! , " ) ∈ [[p]]}

∪ {(! , ! ) | ! (f) exists and is intrinsic}
[x] = {(! , ! , ! (x)) | ! (x) exists}

[[ f (1)]] ! [ x] = {(σ, rest(τ ), rest(τ )(x)) | " (λx.p, β) σ(f ) = (λx.p, β),
((x = 1 : β) + σ, τ ) # [[ p]] ,
rest(τ )(x) exists}

$ {(σ, σ, σ(x)) | σ(f ) exists and is intr insic, σ(x) exists}.



Example

Combine with previous

Assignment and sequence

[ ! f .(f (1) ; x) ! z.(y := y + z ; x := y)]

= {(" , rest(#), b) | ∃$ ∃%# = rest(%), b = rest(%)(x),
$ = (f = (! z.(y := y + z ; x := y), actv(" ))) + " ,
((z = 1 : actv(" )) + $, %) ∈ [[ y := y + z ; x := y]] }.

[[y := y + z]] = { (σ, σ[y/ σ(y) + σ(z)]) | σ(y), σ(z) exist}
[[x := y]] = { (σ, σ[x/ σ(y)]) | σ(x), σ(y) exist}

[[y := y + z ; x := y]] = [[y := y + z]] ! [[x := y]]

= { (σ, σ[y/ σ(y) + σ(z)][x/ σ(y) + σ(z)]) | σ(x), σ(y),
σ(z) exist} .



Example

SimpliÞcation

((z = 1 : actv(θ)) + σ, τ ) ! [[ y := y + z ; x := y]]

" τ = ((z = 1 : actv(θ)) + σ)[y/θ(y) + 1][x/θ(y) + 1]), θ(x), θ(y) exist .

[ ! f.(f (1) ; x) ! z.(y := y + z ; x := y)]

= {(" , " [y/" (y) + 1][x/" (y) + 1], " (y) + 1) | " (x), " (y) exist}.

((y = 4) + σ, τ, b) ∈ [λf.(f (1) ; x) λz.(y := y + z ; x := y)]

⇔ τ = (y = 5) : (σ[x/5]), b = 5, σ(x) exists.

[ λy.(λf.(f (1) ; x) λz.(y := y + z ; x := y)) (4)]

= { (σ,σ[x/5], 5) | σ(x) exists} .



Bisimulation Lemma

Supposef embeds σ in !σ. Let p be a program expression.

(i) If (σ, τ ) ! [[ p]] , then there exist !τ and f ! such that
(!σ, !τ ) ! [[ p]] and f ! embeds τ in !τ .

(ii ) If (!σ, !τ ) ! [[ p]] , then there exist τ and f ! such that
(σ, τ ) ! [[ p]] and f ! embeds τ in !τ .



Meyer & Sieber Examples: 1

For procedure identiÞer P of type                     , x 
distinct from P, the following two programs are 
equivalent.

From semantics of !-expression and application

From semantics of function application and variable

void→ void

let x = c in P() end P()

[[ let x = c in P() end]] = [[ ! x.P () c]]

= { (" , rest(#)) | ((x = c) + " , #) ∈ [[ P() ]] }

[[ P() ]] = {(! , rest(" )) | ! (P) = (#() .p,$), ($ + ! , " ) ∈ [[ p]] }
∪ {(! , ! ) | ! (P) exists and is an intrin sic value}



Meyer & Sieber Examples: 1

Combining previous two steps

SufÞces to show

Construct embedding 

Identity on tree of 

Maps stack elements of           to stack elements of                           , 
skipping top element, 

[[ let x = c in P () end]]

= {(! , rest(rest(" ))) | ! (P ) = (#() .p, $), ($ + (x = c) + ! , " ) ! [[ p]] }
" {(! , ! ) | ! (P ) exists and is an intrin sic value}

∃! " = rest(rest(! )) , (# + (x = c) + $, ! ) ∈ [[ p]] ,

∃%" = rest(%), (# + $, %) ∈ [[ p]]

β + σ ! β + (x = c) + σ

!

β + σ β + (x = c) + σ
actv((x = c) + ! )



Conclusions & Future Work

Compositional relational semantics captures all 
contextual information in state

Currently do not deal with aliasing, although approach 
can be extended

Axiomatization for 1st-order case: [Aboul-Hosn & 
Kozen, RelMiCS Ô06]

Extendable to objects, single inheritance


