
A Proof-Theoretic
Approach to Tactics

Kamal Aboul-Hosn
Cornell University

Tactics

Tactics and tacticals: Programs that represent and execute
several steps of deduction

System-level constructs built with a separate language

Coq, NuPRL, Isabelle all have Turing-complete programming
languages

Higher-order logic programming languages with backtracking
[Appel & Felty, 2004]

The price [Delahaye, 2000]:

User has to learn two languages

Developer has to create a separate infrastructure

More Problems

Inhibits flexibility in proof representation

Explicit statement of proof steps vs. representation
with a tactic

Writing a proof on paper: “We use congruence and
transitivity to replace a with b. We perform a similar
substitution for the rest of the variables on the left.”

The Big Picture

Formal representation vs. system-level representation

Logic for reasoning

Tactics Theorem relationships

Proofs

Proof store/reuse

The Big Picture

[Kozen & Ramanarayanan 2005]

Logic for reasoning

Tactics Theorem relationships

Proofs

Proof store/reuse

Proof store/reuse

The Big Picture

[Aboul-Hosn & Damhøj Andersen, 2005]

Logic for reasoning

Tactics

Proofs

Proof store/reuse

Theorem relationships

Theorem relationships

The Big Picture

Logic for reasoning

Tactics

Proofs

Proof store/reuse
Theorem relationships

Tactics

?

Why the System Level?

Proof search

Powerful tools for automatic proof generation

Tactics

Representation

Relationship to Theorems

Proof Search

Goals

Represent tactics at the same formal level as theorems
and proofs

Be able to translate easily from tactics to the proofs
steps they represent

Represent tactics independently of search techniques
and algorithms

A Motivating Example

Consider a Boolean algebra (B, ! , " , Â, 0, 1)

with axioms of equality:

Theorem 1: ∀a. a∧a∧a = a

ref : ! x. x = x

sym : ! x, y. x = y " y = x

trans : ! x, y, z. x = y " y = z " x = z

cong∧ : ! x, y, z. x = y " (z# x) = (z# y)
cong∨ : ! x, y, z. x = y " (z$ x) = (z$ y)
cong¬ : ! x, y, z. x = y " Âx = Ây

idemp∧ : ! x. x# x = x

A Motivating Example

Theorem that follows: ∀a. a∧a∧a∧a = a

a∧a∧a∧a = a∧a (Theorem 1, cong∧)

a∧a = a (idemp∧)

a∧a∧a∧a = a (trans)

! a. a" . . ." a! "# $
n

= a ∀a. a∧. . .∧a︸ ︷︷ ︸
n+1

= aFrom , can get

Proof Representation

Based on publish/cite by Kozen & Ramanarayanan

Universal Horn equational logic

Individual variables X = {x,y,...}

First-order signature ∑ = {f,g,...}

Individual terms s,t,...

An individual variable

An expression f t1...tn, f is an n-ary function in ∑
and t1...tn are individual variables

Equations d,e,... between two terms, s = t

Theorem: A universally quantified Horn formula

 : Equations (premises)

 : Equation (conclusion)

 : Free variables

Arbitrary specialization through term substitution

with substitution [x/a,y/b,z/z]

becomes

Proof Representation

! i

!

x1, . . . , xm

∀x1, . . . , xm . ! 1 → ! 2 → · · · → ! n → "

∀x, y, z. x = y → x∧z = y∧z

a = b → a∧z = b∧z

Proof Term

A variable p

A constant: name of a theorem

An application π τ, where π and τ are proof terms

An application π t, where π is a proof term and t is an
individual term

An abstraction λp.τ, where p is a proof variable and τ
is a proof term

An abstraction λx.τ where x is an individual variable
and τ is a proof term

Proof Term

A case statement:

A formula variable X

A formula abstraction

caseδ of =ϕ1 ⇒ π1

. . .
=ϕn ⇒ πn

ψ1 ⇒ τ1

. . .
ψm ⇒ τm

! X ."

Formula Extensions

Formula variable X

Recursive formula

Sum formula

µX.ϕ

{δ : =ϕ1 + . . . + =ϕn + ψ1 + . . . + ψm}

Typing Rules

! ! π1 : ϕ1 . . . ! ! πn : ϕn ! ! τ1 : ψ1 . . . ! ! τm : ψm

! ! case X of =ϕ ⇒ π,ψ ⇒ τ : { X : ϕ + ψ}

! ! π : { δ : =ϕ + ψ}
! ! π : δ

ϕi = δ

! ! π : { δ : =ϕ + ψ}
! ! π : δ

ψi[x/t] = δ or
δ : e∗,ψi : e∗

! ! π : ψ

! ! λX.π : ∀X.ψ

! ! π : ∀X.ψ

! ! π ϕ : ψ[X/ϕ]

! ! λp.π : µX.ϕ

! ! π[p/λp.π] : µX.ϕ

! ! π[p/λp.π] : µX.ϕ

! ! λp.π : µX.ϕ

Γ, p : e ! p : e Γ, c : ϕ ! c : ϕ

Γ ! π : e → ϕ Γ ! τ : e
Γ ! π τ : ϕ

Γ ! π : ∀x.ϕ
Γ ! π t : ϕ[x/t]

Γ, p : e ! τ : ϕ

Γ ! λp.τ : e → ϕ

Γ ! τ : ϕ

Γ ! λx.τ : ∀x.ϕ

Library

A pair where

 is the library of theorems

 is a list of annotated proof tasks

Tactics are treated exactly as theorems

L ; T

L

T

T1 = π1, . . . , Tn = πn

A ! π : ϕ

Proof Rules

(assume)
L ; T , A ! τ : ψ

L ; T , A, p : ϕ ! τ : ψ
(ident)

L ; T
L ; T , p : ϕ ! p : ϕ

(mp)
L ; T , A ! π : ϕ " ψ A ! τ : ϕ

L ; T , A ! π τ : ψ

(discharge)
L ; T , A, p : e ! τ : ψ

L ; T , A ! λp.τ : e " ψ

(publish)
L ; T , ! π : ϕ

L, T = λx.π : #x.ϕ ; T

(cite)
L1, T = π : ϕ,L2 ; T
L1, T = π : ϕ,L2 ; T , ! π : ϕ

(forget)
L1, T = π : ϕ,L2 ; T
L1,L2[T/ π] ; T [T/ π]

(inst)
L ; T , A ! λx.π : #x.ϕ

L ; T , A ! π t : ϕ[x/t]

(normt)
L ; T A ! (λx.π) t

L ; T A ! π[x/t] : ϕ
(normp)

L ; T A ! (λp.π) τ

L ; T A ! π[p/ τ] : ϕ

Proof Rules

(case)
L ; T , A, p : e ! ! 1 : " 1 . . . A, p : e ! ! n : " n

L ; T , ! case X of =e⇒ p," ⇒ ! : { X : =e + " }

(decase=)
L ; T , A ! case # of =" ⇒ ! , $ ⇒ %: #

L ; T , A ! ! i : #
" i = #

(decase)
L ; T , A ! case # of =" ⇒ ! , $ ⇒ %: #

L ; T , A ! %i[x/ t] : #
$ i[x/ t] = #

(fold)
L ; T , A ! ! [p/ &p.!] : µX ."

L ; T , A ! &p.! : µX ."

(unfold)
L ; T , A ! &p.! : µX ."

L ; T , A ! ! [p/ &p.!] : µX ."

(publishr)
L ; T , p : µX .$! ! : "

L , p = &x.&p.! : ∀x.µX " ; T
µX .$ = ∀x.µX "

(forget1)
L 1, T = ! : " , L 2 ; T , A ! T %: $

L 1, T = ! : " , L 2 ; T , A ! ! %: $

(normf)
L ; T A ! (&X .!) $

L ; T A ! ! [X / $] : "

Rule Summaries

(assume), (ident), (mp), (inst), (normx), and
(discharge): task manipulation

(publish), (cite), and (forget): Library/task interaction

(case), (decase=), (decase), (fold), (unfold),
(publishr), (forget1): tactics

Tactic Rules

(case): Combine tasks into a case statement

(decase): Unify against an equation and replace case
statement with the body of unified case

(decase=): Match case and replace case statement with
body of matching statement

(fold)/(unfold) : Roll/unroll tactic once to make proof
less/more explicit

(publishr): Add tactic to library

(forget1): Unroll tactic application once to make step
explicit

Steps for Creating Tactics

1. Use (assume) and (ident) to add proof variable with
type of tactic

2. Create proof terms for cases of tactics using proof
variable from step 1 for recursive calls

3. Use (case) rule to combine terms created in step 2
into single case statement

4. Use (publishr) rule to publish tactic

A Tactic Type

µX.∀x.∀a.∀Y. X → {Y : x = x + x∧a = a}

Recursively
calls itself

Conclusion
of tactic

Forms of
conclusion

Typing and Search

Type system finds correct steps to apply in tactic

Most of the work in finding proper case in case
statement

Search procedure needed to type terms

Only element that needs implemented at system level

Formalization and search are separate!

A Motivating Example

Consider a Boolean algebra (B, ! , " , Â, 0, 1)

with axioms of equality:
ref : ! x. x = x

sym : ! x, y. x = y " y = x

trans : ! x, y, z. x = y " y = z " x = z

cong∧ : ! x, y, z. x = y " (z# x) = (z# y)
cong∨ : ! x, y, z. x = y " (z$ x) = (z$ y)
cong¬ : ! x, y, z. x = y " Âx = Ây

idemp∧ : ! x. x# x = x

µX.∀x.∀a.∀Y. X → {Y : x = x + x∧a = a}Tactic:

A Motivating Example

Base case:

Once trying to prove x = x, use reflexivity

Use (cite), (inst), and (assume)

Recursive case:

To prove , recursively call tactic to prove
x = a, then use

R : ϕR ! ref x : x = x

x∧a = a
cong∧, idemp∧, and trans

A Motivating Example

Using (cite), (inst), (assume), and (mp):

Combine cases with (case), publish with (publishr):

R : ϕR ! trans (x∧a) (a∧a) a
(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

: x∧a = a

R = λx.λa.λY.λR. caseY of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

A Motivating Example

Application:

Use (forget1) and (norm) to make a step explicit:

Use (decase) to replace case statement

! R (b∧b∧b) b (b∧b∧b∧b= b) R : b∧b∧b∧b= b

! case(b∧b∧b∧b = b) of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong! x a a (R x a (x = a) R))
(idemp! a)

: b∧b∧b∧b = b

! trans (b∧b∧b∧b) (b∧b) b
(cong! (b∧b∧b) b b

(R (b∧b) b (b∧b∧b = b) R))
(idemp! b)

: b∧b∧b∧b = b

Conclusions

Presented proof-theoretic approach treating theorems
and tactics at the same formal level

Creation of tactics is independent of search strategies
and system-level considerations

Can be combined with [Aboul-Hosn & Damhøj
Andersen 2005] to give scope to tactics

Discover repeated citations and make them tactics:
proof refactorization

