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Tactics

Tactics and tacticals: Programs that represent and execute 
several steps of deduction

System-level constructs built with a separate language

Coq, NuPRL, Isabelle all have Turing-complete programming 
languages

Higher-order logic programming languages with backtracking 
[Appel & Felty, 2004]

The price [Delahaye, 2000]:

User has to learn two languages

Developer has to create a separate infrastructure



More Problems

Inhibits flexibility in proof representation

Explicit statement of proof steps vs. representation 
with a tactic

Writing a proof on paper:  “We use congruence and 
transitivity to replace a with b.  We perform a similar 
substitution for the rest of the variables on the left.”



The Big Picture

Formal representation vs. system-level representation

Logic for reasoning

Tactics Theorem relationships

Proofs

Proof store/reuse
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The Big Picture
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Why the System Level?

Proof search

Powerful tools for automatic proof generation

Tactics

Representation

Relationship to Theorems

Proof Search



Goals

Represent tactics at the same formal level as theorems 
and proofs

Be able to translate easily from tactics to the proofs 
steps they represent

Represent tactics independently of search techniques 
and algorithms



A Motivating Example

Consider a Boolean algebra (B, ! , " , Â, 0, 1)

with axioms of equality:

Theorem 1: ∀a. a∧a∧a = a

ref : ! x. x = x

sym : ! x, y. x = y " y = x

trans : ! x, y, z. x = y " y = z " x = z

cong∧ : ! x, y, z. x = y " (z# x) = (z# y)
cong∨ : ! x, y, z. x = y " (z$ x) = (z$ y)
cong¬ : ! x, y, z. x = y " Âx = Ây

idemp∧ : ! x. x# x = x



A Motivating Example

Theorem that follows: ∀a. a∧a∧a∧a = a

a∧a∧a∧a = a∧a (Theorem 1, cong∧)

a∧a = a (idemp∧)

a∧a∧a∧a = a (trans)

! a. a" . . ." a! "# $
n

= a ∀a. a∧. . .∧a︸ ︷︷ ︸
n+1

= aFrom , can get



Proof Representation

Based on publish/cite by Kozen & Ramanarayanan

Universal Horn equational logic

Individual variables X = {x,y,...}

First-order signature ∑ = {f,g,...}

Individual terms s,t,...

An individual variable

An expression f t1...tn, f is an n-ary function in ∑ 
and t1...tn are individual variables

Equations d,e,... between two terms, s = t



Theorem: A universally quantified Horn formula 

    : Equations (premises)

    : Equation (conclusion)

                 : Free variables

Arbitrary specialization through term substitution

with substitution [x/a,y/b,z/z]

becomes

Proof Representation

! i

!

x1, . . . , xm

∀x1, . . . , xm . ! 1 → ! 2 → · · · → ! n → "

∀x, y, z. x = y → x∧z = y∧z

a = b → a∧z = b∧z



Proof Term

A variable p

A constant: name of a theorem

An application π τ, where π and τ are proof terms

An application π t, where π is a proof term and t is an 
individual term

An abstraction λp.τ, where p is a proof variable and τ 
is a proof term

An abstraction λx.τ where x is an individual variable 
and τ is a proof term



Proof Term

A case statement:

A formula variable X

A formula abstraction 

caseδ of =ϕ1 ⇒ π1

. . .
=ϕn ⇒ πn

ψ1 ⇒ τ1

. . .
ψm ⇒ τm

! X ."



Formula Extensions

Formula variable X

Recursive formula          

Sum formula

µX.ϕ

{δ : =ϕ1 + . . . + =ϕn + ψ1 + . . . + ψm}



Typing Rules

! ! π1 : ϕ1 . . . ! ! πn : ϕn ! ! τ1 : ψ1 . . . ! ! τm : ψm

! ! case X of =ϕ ⇒ π,ψ ⇒ τ : { X : ϕ + ψ}

! ! π : { δ : =ϕ + ψ}
! ! π : δ

ϕi = δ

! ! π : { δ : =ϕ + ψ}
! ! π : δ

ψi[x/t] = δ or
δ : e∗,ψi : e∗

! ! π : ψ

! ! λX.π : ∀X.ψ

! ! π : ∀X.ψ

! ! π ϕ : ψ[X/ϕ]

! ! λp.π : µX.ϕ

! ! π[p/λp.π] : µX.ϕ

! ! π[p/λp.π] : µX.ϕ

! ! λp.π : µX.ϕ

Γ, p : e ! p : e Γ, c : ϕ ! c : ϕ

Γ ! π : e → ϕ Γ ! τ : e
Γ ! π τ : ϕ

Γ ! π : ∀x.ϕ
Γ ! π t : ϕ[x/t ]

Γ, p : e ! τ : ϕ

Γ ! λp.τ : e → ϕ

Γ ! τ : ϕ

Γ ! λx.τ : ∀x.ϕ



Library

A pair           where

  is the library of theorems

  is a list of annotated proof tasks

Tactics are treated exactly as theorems

L ; T

L

T

T1 = π1, . . . , Tn = πn

A ! π : ϕ



Proof Rules

(assume)
L ; T , A ! τ : ψ

L ; T , A, p : ϕ ! τ : ψ
(ident)

L ; T
L ; T , p : ϕ ! p : ϕ

(mp)
L ; T , A ! π : ϕ " ψ A ! τ : ϕ

L ; T , A ! π τ : ψ

(discharge)
L ; T , A, p : e ! τ : ψ

L ; T , A ! λp.τ : e " ψ

(publish)
L ; T , ! π : ϕ

L, T = λx.π : #x.ϕ ; T

(cite)
L1, T = π : ϕ,L2 ; T
L1, T = π : ϕ,L2 ; T , ! π : ϕ

(forget)
L1, T = π : ϕ,L2 ; T
L1,L2[T/ π] ; T [T/ π]

(inst)
L ; T , A ! λx.π : #x.ϕ

L ; T , A ! π t : ϕ[x/t ]

(normt)
L ; T A ! (λx.π) t

L ; T A ! π[x/t ] : ϕ
(normp)

L ; T A ! (λp.π) τ

L ; T A ! π[p/ τ ] : ϕ



Proof Rules

(case)
L ; T , A, p : e ! ! 1 : " 1 . . . A, p : e ! ! n : " n

L ; T , ! case X of =e⇒ p," ⇒ ! : { X : =e + " }

(decase=)
L ; T , A ! case # of =" ⇒ ! , $ ⇒ %: #

L ; T , A ! ! i : #
" i = #

(decase)
L ; T , A ! case # of =" ⇒ ! , $ ⇒ %: #

L ; T , A ! %i[x/ t] : #
$ i[x/ t] = #

(fold)
L ; T , A ! ! [p/ &p.! ] : µX ."

L ; T , A ! &p.! : µX ."

(unfold)
L ; T , A ! &p.! : µX ."

L ; T , A ! ! [p/ &p.! ] : µX ."

(publishr)
L ; T , p : µX .$ ! ! : "

L , p = &x.&p.! : ∀x.µX " ; T
µX .$ = ∀x.µX "

(forget1)
L 1, T = ! : " , L 2 ; T , A ! T %: $

L 1, T = ! : " , L 2 ; T , A ! ! %: $

(normf)
L ; T A ! (&X .! ) $

L ; T A ! ! [X / $ ] : "



Rule Summaries

(assume), (ident), (mp), (inst), (normx), and 
(discharge): task manipulation

(publish), (cite), and (forget): Library/task interaction

(case), (decase=), (decase), (fold), (unfold), 
(publishr), (forget1): tactics



Tactic Rules

(case): Combine tasks into a case statement

(decase): Unify against an equation and replace case 
statement with the body of unified case

(decase=): Match case and replace case statement with 
body of matching statement

(fold)/(unfold) : Roll/unroll tactic once to make proof 
less/more explicit

(publishr): Add tactic to library

(forget1): Unroll tactic application once to make step 
explicit



Steps for Creating Tactics

1. Use (assume) and (ident) to add proof variable with 
type of tactic

2. Create proof terms for cases of tactics using proof 
variable from step 1 for recursive calls

3. Use (case) rule to combine terms created in step 2 
into single case statement

4. Use (publishr) rule to publish tactic



A Tactic Type

µX.∀x.∀a.∀Y. X → {Y : x = x + x∧a = a}

Recursively
calls itself

Conclusion
of tactic

Forms of
conclusion



Typing and Search

Type system finds correct steps to apply in tactic

Most of the work in finding proper case in case 
statement

Search procedure needed to type terms

Only element that needs implemented at system level

Formalization and search are separate!



A Motivating Example

Consider a Boolean algebra (B, ! , " , Â, 0, 1)

with axioms of equality:
ref : ! x. x = x

sym : ! x, y. x = y " y = x

trans : ! x, y, z. x = y " y = z " x = z

cong∧ : ! x, y, z. x = y " (z# x) = (z# y)
cong∨ : ! x, y, z. x = y " (z$ x) = (z$ y)
cong¬ : ! x, y, z. x = y " Âx = Ây

idemp∧ : ! x. x# x = x

µX.∀x.∀a.∀Y. X → {Y : x = x + x∧a = a}Tactic:



A Motivating Example

Base case: 

Once trying to prove x = x, use reflexivity

Use (cite), (inst), and (assume)

Recursive case:

To prove                 , recursively call tactic to prove 
x = a, then use 

R : ϕR ! ref x : x = x

x∧a = a
cong∧, idemp∧, and trans



A Motivating Example

Using (cite), (inst), (assume), and (mp):

Combine cases with (case), publish with (publishr):

R : ϕR ! trans (x∧a) (a∧a) a
(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)

: x∧a = a

R = λx.λa.λY.λR. caseY of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong∧ x a a (R x a (x = a) R))
(idemp∧ a)



A Motivating Example

Application:

Use (forget1) and (norm) to make a step explicit:

Use (decase) to replace case statement

! R (b∧b∧b) b (b∧b∧b∧b= b) R : b∧b∧b∧b= b

! case(b∧b∧b∧b = b) of
(x = x) ⇒ ref x
(x∧a = a) ⇒ trans (x∧a) (a∧a) a

(cong! x a a (R x a (x = a) R))
(idemp! a)

: b∧b∧b∧b = b

! trans (b∧b∧b∧b) (b∧b) b
(cong! (b∧b∧b) b b

(R (b∧b) b (b∧b∧b = b) R))
(idemp! b)

: b∧b∧b∧b = b



Conclusions

Presented proof-theoretic approach treating theorems 
and tactics at the same formal level

Creation of tactics is independent of search strategies 
and system-level considerations

Can be combined with [Aboul-Hosn & Damhøj 
Andersen 2005] to give scope to tactics

Discover repeated citations and make them tactics: 
proof refactorization


